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On kq representations in quantum mechanics 
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Abstract. The Bloch-type functions for linear harmonic oscillators introduced recently by 
Krivoshlykov et al are shown to be identical to the kq representation functions of Zak. As a 
by-product of this analysis we obtain an interesting linear partial differential equation for 
Jacobi’s e3 function with certain periodic boundary conditions. Finally we also point out 
briefly the relation between the so called coherent angular momentum states and kq-type 
representations. 

1. Introduction 

The main purpose of this paper is to analyse the relation between the kq representation 
functions of Zak (1967, 1968, 1972) and Bloch-type functions of a linear harmonic 
oscillator considered recently by Krivoshlykov et a1 (1977). Zak (1967) was the first to 
introduce the kq representation in quantum mechanics and demonstrate the con- 
venience of using it in several problems of solid state physics (Zak 1972). Recently 
Krivoshlykov er a1 (1977) have introduced certain Bloch-type functions associated with 
any quantum system. They have also given the precise formulae expressing these 
Bloch-type functions through Jacobi’s elliptic 8 functions for several quantum systems. 
We shall call these Bloch-type functions of Krivoshlykov et a1 (1977) KMM Bloch 
functions. It is shown below that the normalised KMM Bloch functions for a linear 
harmonic oscillator constructed from its coherent states (Krivoshylkov et a1 1977) are 
the same as Zak’s kq representation functions. 

2. Zak’s functions and KMM Bloch functions 

Following Zak (1972) let us define 

m=-m 

1 where - 7r/a s k S 7r/a and -%a s q. s fa. In order to make the comparison with KMM 
Bloch functions easier we have designated Zak’s Ijlk,-q(x; a )  as & ( x ;  a).  Throughout 
the paper the S functions such as S ( x  + q - ma) in (2.1) refer to the familiar generalised 
functions called the Dirac delta functions (Dirac 1958). Since the { & ( x ;  a)} are 
discrete sums of S functions, they also belong to the class of generalised functions. 
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1368 R Jagannathan and R Vasudevan 

The kq representation functions {&(x; a ) }  defined by (2.1) form the set of basis 
functions for the one-dimensional representations of the Abelian group of operators 

(2.2) 

p̂  = -ia/ax x ^ = X  h = 1 ,  (2.3) 

z = { Z m I m 2  =exp(-imlap^)exp(i2.rrm2x^/a)lm1, m2=0, * I ,  *2 , .  . .) 
with, as usual, 

such that 

i m l m 2 4 k q ( ~  ; a )  = exp{ - i[mlka + (2.rrm2q/a)1}4kq(x; a) .  (2.4) 

As shown by Zak (1972), since { 4 k q ( x ;  a ) }  are eigenfunctions of a complete set of 
commuting operators, they satisify the orthogonality and closure relations 

( k q l k ’ q ‘ ) = S ( k - k ’ ) S ( q - q ’ )  (2.5) 

and 

respectively. The obvious three-dimensional generalisations of these kq represen- 
tation functions have been established as very suitable basis functions in solid state 
problems where the parameters { a }  would be the appropriate lattice constants (Zak 
1972). 

Let us now define the projection operator (Wigner 1959) for the group 2, apart from 
the normalisation constant, as 

corresponding to the kqth representation 

r k q ( 2 m l m 2 )  =exp{-i[kmta + (2m“/a)1) .  (2.8) 

Applying f i  on an arbitrary function f ( x )  and using the identity 

Thus when any nonvanishing f i k $ ( x )  is normalised according to (2.5) one arrives at a 
unique 4 k q ( x ;  a) .  This has to be so since the Abelian group of operators Z forms a 
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complete set, as emphasised by Zak (1972). The Bloch-type nature of &,(x; a )  is 
evident from 

(2.11) 

Let us now express the operator 2mlm, of (2.2) in terms of the creation and 
annihilation operators of a linear harmonic oscillator of mass m = 1 and circular 
frequency w. Then it is easy to see that 

c # J ~ , ( ~  + n u ;  a )  =exp(ikna)&,(x; a) .  

2 m l m 2  = eXP(amlm2bi -a*mlm2b) (2.12) 

b =(w1/2 i+ iw-1 /2  N. iZ 
where 

amlmz = (w'/'qoml +iw-'/'pom2)/&i (2.13) 

qo = a po = 2r/a .  

In the notation of Krivoshlykov et a1 (1977) 

2 m l m 2  = ( -  l ) m l m 2 ~ ( a  m l m 2 )  = fi(a m l m Z )  (2.14) 

where the unitary operator D ( a )  is the well known coherent state generating operator. 
In terms of the expression (2.12) for gmlm, the projection operator &, of (2.7) reads 

A, = f exp[-i(K,mlqo + Kpmzpo)l*fi(am,m2) (2.15) 

with a relabelling of k and q as K, and Kp respectively. The expression on the 
right-hand side of (2.15) has been denoted as QKqKD by Krivoshlykov et a1 (1977). 
Then, in view of (2.10) and (2.12)-(2.15), it is obvious that any normalised Q K q K D f ( x )  is 
given uniquely by +K,K,(x; 40). In general, these QKqKuf(x)  have been called Bloch 
functions of the linear harmonic oscillator by Krivoshlykov et a1 (1977) since they obey 

(2.16) 

as already pointed out in (2.1 1) .  In particular, they have taken f ( x )  to be the coherent 
state 

(x la) = ( w/ r ) 'I4 exp( - 3i wr) exp{ - [(fw )'/'x - a I' ++(a * - la 1')) (2.17) 

with a as any complex number and have shown that 

ml .m2= -m 

( QK,K,~ ) (x  + nqd = exp(iK,nqo)( Q K , K , ~ ) ( x )  

Q K q K p ( X I a ) = ( X I a ; K q ,  Kp) 

= ( X  IQ )edi Ip0b + K,) I /~T  

x e3(exp( - 3q02 w )/qo[K, + i(2 w "'a - i wx1/2 r) (2.18) 
where 

(2.19) 

defines the Jacobi O3 function (Jeffreys and Jeffreys 1962). 
It has been claimed (Krivoshlykov er a1 1977) that where coherent states have been 

useful the above Bloch-type functions (2.18) can be used. As we have shown above, 
when suitably normalised the above so called oscillator Bloch functions become just 
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{dKqK,,(x; 9,)) or Zak’s { + b K q , - K , ( ~ ;  qo) } .  The above form of (2.18) can be understood 
easily if we recognise that (2.10) can be written equivalently as 

m 

&qf(X) = ( c exp(ikma)f(x  ma))^,^ + q ) / a )  (2.20) 
m=-m 

when we write formally 

(2.21) 

as done by Krivoshlykov et a1 (1977) in deriving (2.18). 
It is evident that the set { ( x l a  ; Kq, Kp)l - . r r /qo S Kq S .rr/qo, - .rr/poG K p  6 .rr/p0} is 

complete since they are identical with the set of 4KqKp(~ ;  qo) functions obeying (2.6). 
When (qo, p o )  in (2.13) are chosen such that qopo = 2 m ,  with n > 1 this completeness 
would be lost since the set {d(amIm2)(m -, m2 = 0, * 1, *2, . . .} does not contain all the 
elements of the complete set of commutingoperators {2,,,, lml ,  m2 = 0, f 1, *2, . . .} 
of (2.2). The same conclusion on the completeness of the set of functions {(xla ; Kq, K,)}  
has been reached by Krivoshlykov et a1 (1977) quite differently. 

3. Jacobi’s O3 functions 

The above analysis leads to the following interesting result regarding Jacobi’s O3 
function. When any function f(x) is expressed in terms of Zak’s functions 

= ( a / 2 ~ ) ‘ / ~  5 exp(ikma)S(x - 4  - m u )  
m=--00 

as 

the expansion coefficients 

(3.3) 

obey the Bloch property (Zak 1972) 

( k  + (2 . r r r /a ) ,q+nul f )=exp( ikna) (kq l f )  r , n = 0 , * 1 , * 2  , . . . .  (3.4) 

In the kq representation with {ljlkq(x; a)} as basis the operators {x*, 6) become (Zak 
1972) 

.? = i(a/ak) + (i 6 = -i(a/aq). (3.5) 

L( i ,  $)f(x) = 0. (3.6) 

L((ia/ak)+q*, - i  a/aq)C(kq) = 0 (3.7) 

Let f(x) be a solution of a linear differential equation 

Then obviously (kq l f )  given by (3.3) must be a solution of the differential equation 
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along with the periodicity conditions of (3.4). We shall consider a simple example 
below. We know very well from the study of the quantum harmonic oscillator that 

(3.8) (2 + ib)f(x) = 0 

f(x) =exp(-fx2). (3.9) 

has the solution 

In the kq representation (3.8) becomes 

[(ia/ak)+q +(a/as)l(ksIf>=o (3.10) 

where the appropriate solution (k41f) obeying (3.4) is found to be 

(3.11) 

using (2.19) and (3.3). Now substituting (3.11) in (3.10) we get 

[(ia/ak)+ (a/aq)]es(exp(-ta2)la(k - i q ) / 2 ~ )  = 0. (3.12) 

Thus we realise the interesting fact that e3(exp( -$a2)1a(k - i q ) / 2 ~ )  is a solution of 

[(ialak) + ( a / a s ) E ( k s )  = 0 (3.13) 

subject to the periodic boundary conditions 

exp[-t(q +na)2 ]~ (k+(2nr /a ) ,  ( 4 + n a ) )  

= exp[ikna - ( t q ’ ) ] ~ ( k q )  r ,n=O,  * l ,  * 2 , .  . .  (3.14) 

obtained from (3.4) and (3.11). One can also see directly that (3.13) and (3.14) lead to 
(3.12) as follows. Applying the method of separation of variables to (3.13) and 
requiring the general solution to obey (3.14), corresponding to the case n = 0, r = f 1, 
*2, .  . . , we get 

CO 

~ ( k q )  = C  sa) exp[isa(k -iq)] 
5=--00 

(3.15) 

where the F(sa )  are constants. Further use of (3.14) for the case r = 0, m = * 1, * 2, . . . 
leads to the recurrence relation 

~ ( ( s  + t ) a )  = F ( S U )  exp[-ta2(t2+2st)] s , r = 0 , * 1 , * 2  ) . . . ,  (3.16) 

showing that 

(3.17) 1 2 2  F ( s a )  = exp( - 3s a )F(O) s=o,  *l ,  *2  ) . . . .  
Then on taking F(0)  = 1,  (3.15) becomes 

00 
1 2 2  C(k4)  = C exp(-gs a ) exp[isa(k -iq)] 

s=-CC 

consistent with (3.12). 

(3.18) 
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4. On angular momentum coherent states 

In conclusion, let us also make the following observation. In quantum mechanics 
describing (fz, 4) and similar number and phase operators as canonically conjugate has 
presented well known difficulties (Sussikind and Glogower 1964, Carruthers and Nieto 
1968). Here, since the angular coordinate is confined to the range ( 0 , 2 ~ ) ,  the kq 
representation as suggested by Zak (1969) is the natural choice. The eigenstate!in this 
case correspond to the set of commuting operators generated by exp(i2~r.T~) and 
exp(i4). Hence the kq representation yields for the eigenstates of exp(i$) 

m 

+L,,(cpO) = c S(cp -cp’-2ma) 
m =--CO 

(4.1) 

since f, has only integer eigenvalues (Zak 1969). Recently (Levy Leblond 1973, 
Santhanam 1977), starting with angular momentum states lj, m), diagonal in .f,, states 
diagonal in exp(i4) have been obtained. Santhanam (1977) has obtained states such as 

lj, p =exp(icp))- i exp[-i2Trp(m + j j ) / (2 j+  I)]\;, m )  (4.2) 

where f is the identity operator. Taking the limit j + CO it can be shown (Santhanam and 
Vasudevan 1978) that (4.2) leads to the result that 

m=--I 

is diagonal in exp(i4) as seen already in (4.1). Even though the finite j states {l j , p ) }  of 
(4.2) have been called angular momentum coherent states in the papers cited above, the 
corresponding uncertainty products do not turn out to be minimum. Actually, as 
pointed out by Zak (19721, the kq representations belong to the situation in which the 
uncertainty products will rather be maximum. 
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